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Abstract
In order to allocate the healthcare resource, triage classifica-
tion system plays an important role in assessing the severity of
illness of the boarding patient at emergency department. The
self-report pain intensity numerical-rating scale (NRS) is one
of the major modifiers of the current triage system based on
the Taiwan Triage and Acuity Scale (TTAS). The validity and
reliability of self-report scheme for pain level assessment is a
major concern. In this study, we model the observed expres-
sive behaviors, i.e., facial expressions and vocal characteristics,
directly from audio-video recordings in order to measure pain
level for patients during triage. This work demonstrates a feasi-
ble model, which achieves an accuracy of 72.3% and 51.6% in
a binary and ternary pain intensity classification. Moreover, the
study result reveals a significant association of current model
and analgesic prescription/patient disposition after adjusted for
patient-report NRS and triage vital signs.
Index Terms: behavioral signal processing (BSP), facial ex-
pressions, triage, pain scale, vocal characteristics

1. Introduction
Deriving behavioral informatics from signals, e.g., audio-video
and/or physiological data recordings, offers a new paradigm
for quantitative decision-making across behavior sciences [1].
Behavioral informatics, i.e., computational methods that mea-
sure human’s attributes-of-interest, are developed grounded in
their desired domain applications. For example, notable algo-
rithmic advances have been observed in the medical domains:
detection of depression [2, 3], assessment of Parkinson’s dis-
ease [4, 5], modeling of therapist’s empathy in motivational in-
terview [6, 7], analysis of disorder [8, 9], etc. In this work,
we carry out a research effort into objectifying pain level, i.e.,
one of the six major regulators in the Taiwan Triage and Acu-
ity Scale (TTAS) [10], of an on-boarding emergency patient by
modeling his/her facial expressions and vocal characteristics.

TTAS is jointly developed by the Taiwan Society of Emer-
gency Medicine and the Critical Care Society, which modifies
the Canadian Triage and Acuity Scale (CTAS) [11] by tailoring
toward Taiwan’s particular medical situations. It is officially
announced in 2010 by the Ministry of Health and Welfare to be
the triage system of Taiwan. TTAS includes six major factors
in assessing the severity and screening life-threatening patients:
respiratory distress, circulation, consciousness level, body tem-
perature, pain level, and injury mechanism. In specifics, the
intensity of pain is currently measured by the numerical-rating
scale (NRS)[12, 13], that is a 10-point self-report pain scale.
In clinical practice, physicians and nurses have noticed the dif-
ficulty in the systematic implementation of this instrument es-
pecially for elderly people, foreigners, or patients with a low
education level. This often leads to either a practice of using
FACES rating scale [14] that is designed for children, or the

triage nurses would select the level through his/her own obser-
vations instead of soliciting an answer from the patient. Further-
more, even when the nurses succeed in carrying out NRS, this
self-report rating still suffers from various unwanted idiosyn-
cratic factors, e.g., age and body part dependency and incon-
sistent comprehension of the pain scale. These issues centered
around subjectivity in measuring pain create a deviation on the
consistency and validity of the triage classification system.

Related previous works have concentrated mainly on rec-
ognizing the occurrences of pain by monitoring facial expres-
sions. For example Ashraf et al. [15] uses active appearance
model to recognize frame-level pain, Kaltwang et al. [16] uses
a relevance vector regression model to classify between real and
fake pain, and Wener et al. models head pose for pain detection
[17]. In this work, we propose to include voice characteristics
in addition to facial expression for measuring pain level. More-
over, we contribute not only in the multimodal aspect of pain
level measurement but also in the realism of contextualizing ap-
plications in real medical settings. In this work, we collect data
from a total of 182 real patients as they seek emergency medical
service at Chang Gung Memorial Hospital1. The data includes
audio-video samples during triage and follow-up sessions after
treatment, vital sign (physiological) data during triage, and fi-
nally a set of clinical outcomes. The data recordings are in real
medical settings (in-the-wild), and the interactions are sponta-
neous in nature - all posed as a challenging yet contextualized
situation for deriving appropriate informatics.

Our proposed multimodal framework achieves a 72.3% ac-
curacy in classifying between the extremes (severe versus mild)
pain level and 51.6% accuracy in performing a three-class (se-
vere, moderate, and mild) pain level recognition. The inclusion
of audio modality is essential in improving the overall recogni-
tion rate implicating that the intensity of pain is also reflected
in the patient’s vocal characteristics. Furthermore, while com-
paring to the so called ground-truth, i.e., NRS, is a straight-
forward mean of evaluating the framework, in this work, we
further utilize this audio-video based system in combination
with NRS and vital sign data in order to analyze clinically-
relevant outcome-related variables, in specifics analgesic pre-
scription and patient disposition, as another evaluation scheme.
We demonstrate that even after taking into the account for the
current best medical instruments availability (physiological data
and NRS), the usage of audio-video based pain level assess-
ment can improve the prediction about whether a doctor would
end up prescribing analgesic prescription or order patients to
be hospitalized. This initial result is quite promising as the re-
search effort will continue to derive novel pain-level rating and
validate its ability to improve the current triage classification
system clinically.
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Figure 1: It shows a complete flow diagram of the proposed work. We segment the raw audio recordings manually and then extract
acoustic low-level descriptors; for the video data, we apply a pre-trained constraint local neural field (CLNF) to track the (x, y)
positions of the 68 landmark points on face and then extract descriptors based on to pain-related facial action units. Two encodings
methods, statistical functional descriptors and k-means bag-of-word model, are used to derive a session-level feature vector. Finally,
we conduct pain level recognition using fusion of audio-video features and further analyze it with respect to clinical outcomes.

The rest of the paper is organized as follows: section 2 de-
scribes about data collection and audio-video feature extraction,
section 3 includes experimental setups and results, and section
4 concludes with future work.

2. Research Methodology
2.1. Database Collection
The triage session included audio-video recordings, physiolog-
ical (heart rate, systolic and diastolic blood pressure) vital sign
data, and other clinically-related outcomes (analgesic prescrip-
tion and patient disposition) of on-boarding emergency patients
at Chang Gung Memorial Hospital. We excluded pediatric and
trauma patients, also excluded referral patients or patients with
prior treatment before arrival, and further only included patients
with symptoms of chest, abdominal, lower-back, limbic pain,
and headaches. There were two sessions recorded for each pa-
tient, i.e., at triage and follow-up, where the follow-up session
occurred approximately 1 hour after the treatment, if any, was
given to the patient. These sessions essentially involved nurses
asking the patient for the location of the body pain, the NRS
scale of pain intensity (0 − 10, where 10 means the worst pain
ever), and a brief description on the type of pain felt (for ex-
ample, cramps or aches); it usually lasted around 30 seconds
for each session. The audio-video data was recorded using a
Sony HDR handy cam on a tripod in a designated assessment
room, and the placement of the camera was set attempting to
consistently capture the patients’ facial expressions.

In our current database, we have collected a total of 182 pa-
tients, each recorded at the two designated points in time. After
excluding non-usable data (e.g., cases where the patient’s rela-
tive responds to the pain level assessment instead of the patient,
low audio-video quality due to various uncontrollable factors,
loss of either physiological data or clinical outcomes), we have
a total of 205 audio-video samples from 117 unique patients,
which constitutes the dataset of interest for this work. Lastly,
the pain level is often grouped into three levels based on the
number reported (mild: 0−3, moderate: 4−6, severe: 7−10);
we adopt the same convention in this work to serve as the learn-
ing target for our signal-based pain level assessment system.

2.2. Audio-Video Feature Extraction
Figure 1 depicts the overall framework including audio-
video data preprocessing, low-level descriptors extraction, and
session-level encoding. In the following sections, we will
briefly describe each component.

Figure 2: The red dots are the 68 facial landmarks tacked for
each image. The action units are the ones being indicative of
pain in the past literature. Lastly, it shows the various parame-
terization of the 68 facial landmarks that we compute as video
features to be used in this work. Facial Action Coding System
photos(http://www.cs.cmu.edu/ face/facs.htm)

2.2.1. Acoustic Characteristics
For each recorded session, we first perform manual segmenta-
tion on the audio file to obtain the speaking portions correspond-
ing to the patient, the patient’s relatives, and the interviewer. In
this work, we concentrate only on the patient’s voice character-
istics. We extract 45 low-level descriptors in total, including 13
MFCCs, 1 fundamental frequency, 1 intensity and their asso-
ciated delta and delta-delta every 10ms. This set of spectral-
prosodic features is extracted due to their common usage in
characterizing paralinguistic and emotion information [18]. The
audio features are further z-normalized per speaker.
2.2.2. Facial Expressions
On the video side, for each session, we first apply constrained
local neural fields (CLNF) [19] as a pre-processing step. CLNF
tracks a patient’s 68 facial landmark’s position based on the
Active Orientation Model (AOM) [20], which is an extension
to Active Appearance Model for describing the shape and ap-
pearance of a face. CLNF, i.e., an instance of constrained lo-
cal model, essentially involves three major technical compo-
nents: point distribution model (describing the position of fea-
ture points in an image), local neural field patch experts (layered
unidirectional graphical model), and optimization fitting ap-
proach (non-uniform regularized landmark mean shift fitting).
By applying CLNF, we then are able to track the 68 feature
points (Figure 2), e.g., around face, eyes, and nose contour, for
each patient in each image of the recorded video session.

Past works have identified several facial action units that are
related to the feeling of pain [21, 22], e.g., AU4, 6, 7, 9, 10, 12,
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Table 1: It summarizes the Unweighted Average Recall (UAR) obtained in Exp I. 2-Class indicates the binary classification task between
the extreme pain levels (severe versus mild). 3-Class indicates the ternary classification between severe, moderate, and mild pain levels.
The numbers in bold indicate the best accuracy achieved within that specific task.

Chance Audio-Only Video-Only Multimodal Fusion (early-fusion / late-fusion)

Functional Bow Functional Bow FuncA, FuncV FuncA, BowV BowA,FuncV BowA, BowV
2-Class 50.0 67.9 61.3 55.9 61.9 66.8 / 68.7 72.3 / 68.1 56.6 / 61.5 61.1 / 64.8
3-Class 33.3 46.0 42.9 40.9 40.8 43.5 / 48.3 49.7 / 51.6 40.8 / 43.7 41.4 / 44.8

16, 25, 43 (Figure 2). In this work, instead of recognizing these
facial action units, we compute features characterizing these ex-
pressions directly from the tracked key points’ (x, y) position,

• Eyebrows (7): the distance of inner eyebrows divided by
the distance of outer eyebrows (1), the quadratic polyno-
mial coefficients of the right and the left eyebrows (6)

• Nose (2): the normalized distance between nose and
philtrum (1), and of nasolabial folds (1)

• Eyes (5): the outer eye corner opening (2), the distance
between the inner eye corners divided by the distance of
outer eye corners (1), the distance of upper and lower
eyelids divided by the distance from the head to the cor-
ner of the eyes (2)

• Mouth (14): the quadratic polynomial coefficients from
the shape of upper lip, including outer and inner part,
and lower lip, including outer and inner part (12), the
two-sided mouth corners opening angles (2)

There are a total of 28 features per frame extracted from the face
to represent the facial expression of the patient. Figure 2 also
shows a schematics of the features being extracted in this work.

2.3. Session-level Encodings
Since each session is approximately 30 seconds long, we ad-
ditionally utilize two different encoding approaches to form a
fixed-length feature vector at the session-level. The first one
is based on computing 15 different statistical functionals on
audio and video low-level descriptors (Functional). The list
of functionals includes maximum, minimum, mean, median,
standard deviation, 1st percentile, 99th percentile, 99th-1st per-
centile, skewness, kurtosis, minimum position, maximum po-
sition, lower quartile, upper quartile, and interquartile range.
The second approach is based on k-means bag-of-word (BoW)
encoding, which encoding varying length of sequences of low-
level descriptors with a histogram count of cluster occurrences.
In general, BoW characterizes the quantified behavior types
over a duration of time. The number of clusters is set to be
256 for both audio and video.

3. Experimental Setup and Results
In this work, we set up two different experiments:

• Exp I : the NRS pain scale recognition task
• Exp II: clinical outcomes analyses

Exp I is designed to validate that the pain-related facial and vo-
cal expressions can indeed be modeled and used in the develop-
ment toward a signal-based pain scale, and Exp II is designed
to analyze the predictive information that the signal-based pain
scale possess in addition to the NRS and patient’s physiology
to the clinical judgment of painkiller prescription and patient’s
disposition (hospitalization or discharge).

3.1. Exp I: NRS Pain Level Classification
In Exp I, we perform two different recognition tasks: 1) bi-
nary classification between the extreme pain levels, i.e., severe
vs. mild pain, on the subset of the dataset and 2) ternary clas-
sification of the three commonly-used pain levels, i.e., severe

vs. moderate vs. mild, on the entire dataset. Severe pain cor-
responds to NRS score ranging between 7 − 10, moderate is
4 − 6, and mild is 0 − 3. We design two different tasks due
to the fact that NRS rating itself only relies on patient’s self-
report, which can be subjective especially for the moderate por-
tion of the data. By running an additional binary classification
on the extreme set, where there is less concern on the reliabil-
ity of the label, we can better assess the technical feasibility
of our framework. The classifier of choice for this experiment
is the linear-kernel support vector machine. We employ two
different multimodal fusion techniques. One is based on early-
fusion technique, i.e., concatenating audio and video features
after performing univariate feature selection (i.e., ANOVA) on
each modality separately. Another one is based on late-fusion
technique, i.e., by fusing the decision scores from the audio and
video modality separately using logistics regression. All evalu-
ation is done via leave-one-patient-out cross-validation, and the
performance metric is unweighted average recall.

3.1.1. Results and Discussions
Table 1 summarizes the results of Exp I. 2-Class indicates the
binary classification task between the extremes. 3-Class indi-
cates the ternary classification between the three pain levels.
The numbers in bold indicate the best accuracy achieved. There
are a couple of points to note in these results. The best accura-
cies achieved are 72.3% and 51.6%, i.e., multimodal fusion of
audio and video modalities, for 2-Class and 3-Class classifica-
tion tasks respectively. Both of these results are significantly
better than the chance baseline indicating that there indeed
exists pain-related information that can be modeled through
audio-video signals. Another point to make is that while past
works concentrate mostly on the facial expressions, in our work,
we demonstrate that the vocal characteristics are also indicative
of the patient’s experience of pain. In fact, if we compare the
audio-only and video-only accuracies, the result obtained with
audio-only features are slightly higher than the video-only fea-
tures.

Secondly, the type of encoding methods affects the recogni-
tion accuracies. We show that functionals-based method works
better for audio features and bag-of-word approach works better
for video features. In fact, the best accuracy reported is by fus-
ing functional-based audio feature with bag-of-word encoding
of video feature. We hypothesize that this could be due to the
fact that pain-related audio characteristics are non-linearly dis-
tributed across the session (hence, the functional descriptor ap-
proach works better), and our video features are inherently try-
ing to capture a specific configuration of appearances (hence, a
counting-based method of encoding is superior). Another thing
to note that, in the three-class problem, the error rate for the
moderate class is considerably higher than in the mild and se-
vere. It could be due to the fact that this class is inherently
ambiguous; hence not only the data itself is ambiguous but the
ground truth itself can be unreliable. In summary, we demon-
strate that our proposed audio-video-based pain scale is capable
of reaching a substantial reliability compared to the established
NRS self-report-based instrument for assessing pain.
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3.2. Exp II: Clinical Outcomes Analyses
The overarching goal of the research effort is not just to repli-
cate the NRS self-report pain scale, instead, the aim is to de-
rive a signal-based (i.e., from audio-video data) informatics that
can supplement the current decision-making protocol. A physi-
cian’s decision on the type of treatment, if any, to the patient
is often largely based on a holistic clinical assessment of a pa-
tient’s overall condition. Hence, in Exp II, our aim is to design a
simple quantitative score that combines the available measures
at triage with the audio-video based pain level (system output
in section 3.1). We will demonstrate that this score has added
information that is relevant to the patient’s clinical outcomes of
analgesic prescription and disposition. The exact analysis pro-
cedure goes as follows. For each triage, we have the following
measures for every patient:

• PHY: age, systolic/diastolic blood pressure, heart rate
• NRS-3C: the three pain levels, i.e., mild, moderate, and

severe, derived from the patient’s NRS scale
• SYS-2C: one of the two predicted pain levels (mild / se-

vere) derived from the 2-Class SVM
• SYS-2C(d): the decision score derived the 2-Class SVM
• SYS-3C: one of the three predicted pain levels (mild /

moderate / severe) derived from the 3-Class SVM
• SYS-3C(d): the decision score derived the 3-Class SVM

PHY measures are all normalized with respect to the age of each
patient. Further, we have two clinical dichotomous outcome
variables for each patient, i.e., painkiller prescription and dis-
position. We design a score, painK and dispT, of each outcome
by training a linear regression model each on the training set
using the measures mentioned above as the independent vari-
ables, and then we apply the learned regression model to assign
an outcome score for each patient i. Lastly, by utilizing the fol-
lowing simple rule, we can predict whether a patient i will end
up being prescribed medication or being hospitalized:

prescription: painKi > AVG{painKj}∀j∈train-set

hospitalization: dispTi > AVG{dispTj}∀j∈train-set

where AVG means the average values of the score within the
training set. All of these procedures are done completely via
leave-one-patient-out cross validation. The main idea of the
analyses is to show that by having the audio-video based pain-
scale system, it enhances the quantitative (i.e., objective and
measurable) evidences to the doctor’s clinical judgment even
when accounted for the current clinical instruments.

3.2.1. Experimental Results and Discussions
Table 2 summarizes the results of Exp II as measured in UAR.
There are some interesting points to note in this analysis. For
the outcome of analgesic prescription, we see that NRS scale
by itself naturally is already capable of achieving an accuracy
of 66.3%, in accordance with known phenomenon in the past
[23], and PHY measures alone do not contribute at all. How-
ever, by combing NRS to the SYS-3C(d), the accuracy im-
proves to 71.0% (an 4.7% absolute improvement). This result
seems to indicate that the decision scores outputted from the 3-
Class SVM encodes additional information beyond NRS scale
that is relevant in understanding how physicians make a judg-
ment on analgesic prescription. Furthermore, for the outcome
of patient’s disposition (hospitalization or not), we see that PHY
(vital sign) by itself obtains 56.4% accuracy, where NRS scale
does not provide information here. However, by coming PHY
with SYS-2C, the accuracy improves to 65.7% (a 9.3% absolute
improvement) - signifying the added information that NRS is

Table 2: Summary of Exp II: the accuracy number is measured
in unweighted average recall

Analgesic Pres. Hospitalization

PHY 49.6 56.4
NRS-3C 66.3 42.7
PHY+NRS-3C 63.5 56.4
SYS-2C 51.5 58.7
SYS-3C 58.8 57.1
PHY+SYS-2C 47.8 65.7
PHY+SYS-3C 53.3 58.6
PHY+SYS-2C(d) 54.4 56.4
PHY+SYS-3C(d) 58.4 54.4
NRS-3C+SYS-2C 66.3 58.7
NRS-3C+SYS-3C 66.3 57.1
NRS-3C+SYS-2C(d) 66.3 43.3
NRS-3C+SYS-3C(d) 71.0 44.7
PHY+NRS-3C+SYS-2C 62.3 65.7
PHY+NRS-3C+SYS-3C 62.7 55.9
PHY+NRS-3C+SYS-2C(d) 66.0 55.1
PHY+NRS-3C+SYS-3C(d) 69.6 55.8

lacking originally yet the audio-video based pain-scale do pos-
sess in terms patient’s disposition outcome.

In summary, while the audio-video based system is trained
from the NRS, it seems to differ possibly due to the fact that it
models the facial expressions and vocal characteristics directly.
We demonstrate that these signal-based pain scales indeed pos-
sess additional clinically-relevant information to the outcome
variables of emergency triage beyond what is already captured
in the NRS scale and conventional vital sign measures.

4. Conclusions
In this work, we develop an initial predictive framework to as-
sess the pain-level for patients at emergency triage. The systems
show reliable estimates to the established NRS pain scale. Fur-
thermore, we evaluate the usefulness of such system by demon-
strating that it can capture important information about the out-
come of the patient beyond the current available instrumenta-
tions used at triage. This initial result is quite promising as the
goal of the research is to devise a novel objective and quantifi-
able informatics not to replicate the current instrumentation but
to provide supplemental clinically-relevant information that is
beyond the established protocols.

There are multiple future directions. Technically, employ-
ing state-of-the-art speech/video processing and machine learn-
ing algorithms will be an immediate future direction as we con-
tinue to collect more data samples (our aim is to collect at least
500 unique patients’ data). On the analysis part, we will put
effort into understanding exactly what additional information
that the system is able to capture from the facial and vocal ex-
pressions about the pain that is missing from the NRS scale,
and whether such information is related to the physiology of
the patient (e.g., muscle movement in response to pain felt that
may correlate with the measures of heart rate or blood pres-
sure). Having more insights discovered, we can hopefully help
advance and benefit the current medical practices at the emer-
gency triage with the introduction of such an informatics.
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